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Examples of such synchronization and ordering constructs are:

- mem_ref t *lock alloc()
void lock(mem_ref t 1)
void lock_dealloc(mem_ref t*l)

- fetch-and-op(mem_ref t *p, op, arg, size)
Get the data of length "size" at shared memory location p, and
then perform the specified operation "op" on the data at location
"p" using the additional data provided by arg:
For example, "fetch~-and-op(p, ADD, 1, 4)" refurns the 4-byte
value located in shared memory at location "p", then adds 1 to
the value in shared memory.
This form of synchronization primitive is commonly used to
implement efficient critical sections, statistics counters,
and linked lists.

- sync(mem_ref t*p)
Ensure that all prior accesses to shared memory location p have
been completed. This is useful if the shared memory implemention
exploits the higher performance that is possible in weakly
ordered hardware systems.

FIG. 32
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- Creation/Deletion/Attachment of Shared Memory Arenas:

Ih‘r*

* Create memory allocation arena arena_name using a single mmap'd
* file for backing store. This has the potential to allow large

* object allocations to occupy non-contiguous pages but requires

* a ramdisk or tmpfs backing store to avoid lazy page writes to

* disk.

* Returns
* 0 on success
* MEM_ARENA_EEXIST on failure
*/
int mem_arena_create_mmap_file(
const char *arena_name,
size t size limit,
const char *backing_file);

/**

* Remove the named memory allocation arena from the system
*/

int mem_arena_remove(const char *arena_name);

/**

* Attach to a specific memory allocation arena with namespace

* shared across the node.

* mem_arena_detach() should be called on termination for diagnosic
* purposes but for correctness both abnormal and normal termination
* imply detach.

* Returns
*  MEM _ARENA REF _ENOENT on failure
*f

mem_arena_ref t mem_arena_attach(const char *arena_name),

/**

* Detach from arena. All mem_ref_t references associated with
* arena_ref are released.

*/

void mem_arena_detach{(mem_arena_ref_t arena_ref);

FIG. 33
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- Allocate/Release a Piece of Memory from an Arena:

l**

* Allocate an object with one reference attached to
* arena_ref, returning that reference. policy

* specifies retention/protection poli

* PROT_ANY - permissions can be manipulated arbitrarily

* PROT_WRITE_ONCE - the object may be set to read-only and
* stay there

* PROT_LRU - retain when reference count hits zero. LRU

* eviction is explicitly specified so dangling weak

* references manifest as bugs more often.

* Memory allocation/referencing and mapping are separate

* to accomodate proxy operation, early failures on resource

* shortage, and applications with 32 bit address spaces.

* Returns
* MEM_REF_ENOMEM on failure
*f

mem_ref t mem_alloc(mem_arena_ref_t arena_ref, size_{ size,
int prot_policy,
int flags);
/**
* Release a memory reference. The objects will be lazily
* released from memory aliowing use as a cache.
*f
void mem_ref_release{mem_ref 1);
/-k*
* Guarantee a map of the range [offset, offset + iength) exists
* within this context's address space. prot is per mmap(2)

*

* Calls to mem_ref_map may be idempotent.

* Returns
* Mapped address on success
* MEM_VOID_PTR_EACCESS on protection failure
*
void *mem_ref_map(mem_ref_t ref, size_t length, int prot,
off_t offset);
/**
* Suggest a given reference mapping is unnecessary although a
* physical unmapping would aid debugging

* XXX physical unmapping is only possible with mmap'd ramdisk

* and not SYSV shm backing store.

* Returns:

* 0 on success

*/

int mem_ref_unmap({mem_ref_t, void *addr};

I**

* Set mem_ref access protections using PROT_ from sys/mman.h.
* PROT_READ readable

* PROT_WRITE writeable
* PROT_READ|PROT_WRITE read-write F l G . 34

* PROT_NONE no permissions

“*

* Permissions may not be checked until the next mem_ref_clone().
* Returns:

* 0 on success

*  MEM_EACCESS on an illegal permission.

:\’/

int mem_ref_set_prot(mem_ref_t ref, int prof};



U.S. Patent Jun. 2, 2015 Sheet 37 of 38 US 9,047,351 B2

- Interprocess ldentifiers and Multiversioning of Objects

/**

* Return the unique 1D for ref which can be passed between contexts.
* Different versions may be assigned to a given permanent id.

* Reference count hitting zero causes mem_id_ref() to fail.

*/

mem_id_t mem_ref get perm_id(mem_ref t ref),

/**

* Return a unique 1D for the current version of ref which can be

* passed between contexts. The reference count hitting zero causes
* mem_id_ref() to fail.

i

mem_id_t mem_ref _get current_id(mem_ref_t ref);

/**

* Create a local reference from id. MEM_ID_ROOT refers to the
* permanant 1D of the root object for the pool.

* Returns:

*  MEM_REF_ENOENT if the reference count has hit zero before this
* call.

*  MEM_REF_EACCESS if the object's permissions are incorrect

*f

mem_ref t mem _id ref(mem _id tid, int prot);

/**

* Change the data version associated with a permanent id. Used

* to complete updates when using multi-version concurrency control.

* Does not affect the permanent id associated with ref.

* Returns:

* 0 on success

*  MEM_ENOENT when perm_id does not exist

*MEM_EVERSION where the current id associated with perm_id

* does not match.

*/

int mem_ref_set_current_id(mem_ref t ref, mem_id_t perm_id
mem_id_t equals_current_id),

FIG. 35
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- Copy Shared Memory Objects

/**

* Duplicate a reference so that different subsystems within one
* address space can reference count objects. This is safer

* than incrementing and decrementing reference counts.

*/

mem_ref_t mem_ref shallow_copy(mem_ref t);

/**

* Provide semantics equivalent to duplicating the object referred

* to by a reference (eventually we may use the VM subsystem for
* COW) to allow making a writeable copy of a read-only object.

* policy specifies retention/protection policies

* PROT_ANY - permissions can be manipulated arbitrarily

* PROT_WRITE_ONCE - the object may be set to read-only and
* stay there

* PROT_LRU - retain when reference count hits zero. LRU

* eviction is explicitly specified so dangling weak

* references manifest as bugs more often.

* Returns:

*  MEM_REF_ENOMEM on allocation failure

*  MEM_REF_EACCESS when copy is not permitted XXX is this
* reasonable?

*/

mem_ref_t mem_ref _deep_copy(mem_ref_t ref, int policy);

FIG. 36
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George et al., the entire contents of which are incorporated by
reference for all purposes as if fully set forth herein.

FIELD OF THE INVENTION

This invention relates to distributed object stores, and more
particularly to, shared global memory accessible to object
stores executing on a plurality of nodes using flash memory.

BACKGROUND OF THE INVENTION

Database programs are one of the most widely used and
useful applications of computers. Data records may be stored
in database tables that are linked to one another in a relational
database. Queries from users allow database programs to
locate matching records and display them to users for modi-
fication. Often a large number of users access different
records in a database simultaneously.

Database records are typically stored on rotating hard
disks. Computer hard-disk technology and the resulting stor-
age densities have grown rapidly. Despite a substantial
increase in storage requirements, disk-drive storage densities
have been able to keep up. Disk performance, however, has
not been able to keep up. Access time and rotational speed of
disks, key performance parameters in database applications,
have only improved incrementally in the last 10 years.

Web sites on the Internet may link to vast amounts of data
in a database, and large web server farms may host many web
sites. Storage Area Networks (SANs) are widely used as a
centralized data store. Another widespread storage technol-
ogy is Network Attached Storage (NAS). These disk-based
technologies are now widely deployed but consume substan-
tial amounts of power and can become a central-resource
bottleneck. The recent rise in energy costs makes further
expansion of these disk-based server farms undesirable.
Newer, lower-power technologies are desirable.

FIG. 1 highlights a prior-art bottleneck problem with a
distributed web-based database server. A large number of
users access data in database 16 through servers 12 via web
10. Web 10 can be the Internet, a local Intranet, or other
network. As the number of users accessing database 16
increases, additional servers 12 may be added to handle the
increased workload. However, database 16 is accessible only
through database server 14. The many requests to read or
write data in database 16 must funnel through database server
14, creating a bottleneck that can limit performance.

FIG. 2 highlights a coherency problem when a database is
replicated to reduce bottlenecks. Replicating database 16 by
creating a second database 16' that is accessible through sec-
ond database server 14' can reduce the bottleneck problem by
servicing read queries. However, a new coherency problem is
created with any updates to the database. One user may write
adata record on database 16, while a second user reads a copy
of that same record on second database 16'. Does the second
user read the old record or the new record? How does the copy
of the record on second database 16' get updated? Complex
distributed database software or a sophisticated scalable clus-
tered hardware platform is needed to ensure coherency of
replicated data accessible by multiple servers.

Adding second database 16' increases the power consump-
tion, since a second set of disks must be rotated and cooled.
Operating the motors to physically spin the hard disks and run
fans and air conditioners to cool them requires a substantially
large amount of power.

It has been estimated (by J. Koomey of Stanford Univer-
sity) that aggregate electricity use for servers doubled from
2000 to 2005 both in the U.S. and worldwide. Total power for
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servers and the required auxiliary infrastructure represented
about 1.2% of total US electricity consumption in 2005. As
the Internet and its data storage requirements seem to increase
exponentially, these power costs will ominously increase.

Flash memory has replaced floppy disks for personal data
transport. Many small key-chain flash devices are available
that can each store a few GB of data. Flash storage may also
be used for data backup and some other specialized applica-
tions. Flash memory uses much less power than rotating hard
disks, but the different interfacing requirements of flash have
limited its use in large server farms. Flash memory’s random-
access bandwidth and latency are orders of magnitude better
than rotating disks, but the slow write time of flash memory
relative to its read time complicates the coherency problem of
distributed databases.

Balancing workloads among the servers is also problem-
atic. Database server 14 may become busy processing a par-
ticularly slow or difficult user query. Incoming user queries
could be assigned in a round-robin fashion among database
servers 14, 14', but then half of the incoming queries would
back up behind the slow query in database server 14.

Improvements in cost, performance, and reliability in data
processing systems are made possible by flash memory and
other high speed, high density, solid-state storage devices.
These improvements are of limited benefit in some scalable
cluster systems where data must be partitioned across mul-
tiple processing nodes and locally accessed, or placed on a
dedicated Storage Area Network, or shared through applica-
tion inter-process communication. The overhead involved in
these existing techniques consumes much of the performance
and cost advantage inherent in high density solid-state
memory.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and in which like reference numer-
als refer to similar elements and in which:

FIG. 1 highlights a prior-art bottleneck problem with a
distributed web-based database server;

FIG. 2 highlights a coherency problem with the prior art
when a database is replicated to reduce bottlenecks;

FIG. 3 shows a database management system that has
multiple instances running in a shared memory space access-
ing a database that is distributed across flash memory in many
nodes according to an embodiment of the invention;

FIG. 4 shows a Sharing Data Fabric (SDF) that enables
multiple instances of a DBMS program to access a partitioned
database stored in flash memory on multiple nodes according
to an embodiment of the invention;

FIG. 5 shows a global, shared flash memory that appears to
be a single global address space to multiple servers connected
to a sharing data fabric according to an embodiment of the
invention;

FIG. 6 shows a hardware node in a global, shared flash
memory system according to an embodiment of the inven-
tion;

FIG. 7 is a layer diagram of software and hardware layers
in a flash memory system using a shared data fabric to enable
global sharing of database records in a distributed flash
memory according to an embodiment of the invention;

FIG. 8 is a transaction diagram of services and interfaces to
a shared data fabric according to an embodiment of the inven-
tion;
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FIG. 9 shows permanent objects in flash memory being
copied to DRAM caches on multiple nodes according to an
embodiment of the invention;

FIG. 10 shows components of a DBMS that access a data-
base stored in a distributed shared global flash memory
according to an embodiment of the invention;

FIG. 11 is a flowchart of the SDF processing a database
record miss in the local buffer cache according to an embodi-
ment of the invention;

FIGS. 12A-D show several alternate interfaces to the SDF
according to an embodiment of the invention;

FIG. 13 shows a put record operation that puts a record in
the log file for error recovery according to an embodiment of
the invention;

FIG. 14 shows an action node requesting a database object
from a home node that fetches a modified object on a sharing
node using transaction tables and an object directory accord-
ing to an embodiment of the invention;

FIG. 15 is a snapshot state diagram of a compute node that
can act as an action, home, or sharing node for a distributed
database program according to an embodiment of the inven-
tion;

FIG. 16 shows a get operation inside a transaction that
misses in the object cache of the action node, and fetches the
object from flash memory of the home node according to an
embodiment of the invention;

FIG. 17 shows a commit transaction operation according to
an embodiment of the invention;

FIG. 18 shows an abort transaction operation according to
an embodiment of the invention;

FIG. 19 illustrates sync, transaction start, and lock opera-
tions according to an embodiment of the invention;

FIG. 20 is an illustration of a SDF Agent according to an
embodiment of the invention;

FIG. 21 is an illustration of a process structure on the action
node and home node according to an embodiment of the
invention;

FIG. 22 is an illustration of a process flow of a SDP_GET
having a cache hit at the action node according to an embodi-
ment of the invention;

FIG. 23 is an illustration of a process flow of a SDP_GET
having a cache miss according to an embodiment of the
invention;

FIG. 24 is an illustration of a scoreboard request block
format according to an embodiment of the invention;

FIGS. 25-31 illustrate an example of a scoreboard API and
scoreboard interaction according to one embodiment of the
invention; and

FIGS. 32-36 illustrate synchronization and ordering con-
structs according to an embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

Approaches for shared global memory accessible to a plu-
rality of processes in a distributed object store that is imple-
mented, at least partially, on flash memory are described. In
the following description, for the purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the embodiments of the invention
described herein. It will be apparent, however, that the
embodiments of the invention described herein may be prac-
ticed without these specific details. In other instances, well-
known structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the embodi-
ments of the invention described herein.

FIG. 3 shows a database management system that has
multiple instances running in a shard memory space access-



US 9,047,351 B2

5

ing a database that is distributed across flash memory in many
nodes. Rather than storing the database on a single compute
node, the database is partitioned so that different tables are
stored on different nodes 242, 243, 244. Reliability is
improved since database tables may be replicated and kept
updated on several nodes, allowing for backup nodes to
replace nodes that fail.

Database tables are stored in flash memory 24 in each node
242, 243, 244, with each node typically storing a different set
of database tables. Shared address space 280 (also called a
node address space) is used to access flash memory of one or
more of the nodes. The nodes provide one or more partitions
(also called shards) of the shared address space.

Multiple instances of DataBase Management System
(DBMS) program 200, 200' are executing within shared
address space 280 and are able to access data items in the
distributed database that are physically stored in flash
memory 24 on nodes 242, 243, 244. Having multiple
instances of database management system (DBMS) program
200, 200" also improves reliability and reduces bottleneck
problems, since user queries may be dispatched to different
executing instances of DBMS program 200, 200"

Having DBMS program 200 execute in shared address
space 280 allows the program to see just one address space,
simplifying DBMS program 200. Ideally, it would be desir-
able for multiple executing instances of DBMS program 200,
200' running on different physical nodes to observe shared
address space 280 so that each could operate as if it is the only
executing instance of DBMS program 200. Thus major modi-
fications and re-writes of the program code of DBMS pro-
gram 200 could be avoided using shared address space 280. A
DBMS program written for execution on a single address
space is preferred since code does not have to be re-written.
However, without other facilities, the multiple executing
instances of DBMS program 200, 200" would contend with
each other for the same resources, causing failures.

FIG. 4 shows a Sharing Data Fabric (SDF) that enables
multiple instances of a DBMS program to access a partitioned
database stored in flash memory on multiple nodes. The SDF
is a middleware layer that fits between executing instances of
DBMS program 200, 200" and nodes 242, 243, 244.

SDF 20 includes an interface for communications between
high-level programs such as executing instances of DBMS
program 200, 200' and lower-level hardware controllers and
their software and firmware drivers. SDF 20 is accessible by
high-level instances of DBMS program 200, 200" using an
applications-programming interface (API). Communication
between nodes to ensure coherency of database tables stored
in flash memory 24 on the multiple nodes is performed by
SDF 20.

Normally, adding nodes provides a less-than-linear perfor-
mance improvement, since bottlenecks may occur to data
stored in just one location on a node, such as shown on FIG.
1. However, using SDF 20, data records stored in flash
memory 24 may be cached near executing instances of
DBMS program 200, 200' on one or more nodes, allowing
multiple processors to access the same data. Coherency of the
cached database records is important to prevent data corrup-
tion.

FIG. 5 shows a global, shared flash memory that is acces-
sible as a single global address space to multiple servers
connected to a sharing data fabric (SDF). Central Processing
Units (CPUs) or processors 18, 18' can execute programs
such as executing instances of a DBMS program to process
requests such as user queries of a database that arrive over a
network such as the Internet. Each of processors 18 has a
cache of DRAM 22 that contain local copies of objects such
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as records in a database. These local copies in DRAM 22 are
local to the node containing processors 18 and are accessed by
processors 18 in response to requests from external users.

While DRAM 22, 22' stores transient copies of objects, the
objects are more permanently stored in flash memory 24, 24'.
Objects remain in flash memory 24, 24' and are copied to
caches in DRAM 22, 22' in response to access requests by
programs running on processors 18, 18'.

Sharing data fabric (SDF) 20 is a middleware layer that
includes SDF threads running on processors 18, 18', and APIs
and tables of data. A physical interconnect, such as an Ether-
net or InfiniBand® fabric, connects physical nodes together.
Object copies are transterred across the physical interconnect
by SDF 20 from flash memory 24, 24' to caches in DRAM 22,
22', and among DRAM 22, 22' caches as needed to ensure
coherency of object copies.

Flash memory 24, 24' can be physically located on many
nodes, such as having one flash memory 24 for each processor
18, or in other arrangements. SDF 20 makes all the objects
stored in flash memory 24, 24' appear to be stored in a global
address space, even though the global address spaced is
shared among many processors 18, 18'. Thus flash memory
24, 24' together appear to be one global, shared flash memory
26 via SDF 20. The database is partitioned into many objects,
which are stored in a distributed fashion on many nodes
within the global shared flash memory.

FIG. 6 shows a hardware node in a global, shared flash
memory system. A flash memory system has multiple nodes
such as shown in FIG. 6. The multiple nodes are connected
together by a high-speed interconnect such as an Ethernet or
InfiniBand. One or more links in this high-speed interconnect
connect to Network Interface Controller (NIC) 36 on the node
shown in FIG. 6.

Processor 18 executes an instance of a DBMS program,
threads, and other routines and accesses a local memory that
stores program code and data, such as DRAM 22. DRAM 22
also acts as a cache of objects such as database records in the
global, shared flash memory.

Processor 18 also connects to PCle switch 30. PCle switch
30 allows processor 18 to communicate with other nodes
through NIC 36 to send and receive object copies and coher-
ency commands. Flash modules 34 contain arrays of flash
memory that store permanent objects including database
records and tables. Flash modules 34 are accessed by proces-
sor 18 through PCle switch 30.

FIG. 7 is a layer diagram of software and hardware layers
in a flash memory system using a shared data fabric to enable
global sharing of database records in a distributed flash
memory. Sharing data fabric services 116 include API’s that
application programs 122 or DBMS database program 119
can use to access objects such as database records and control
attributes of the objects. Sharing data fabric services 116 are
the API’s that communicate with routines and threads in
sharing data fabric 112 that provide a unified shared data
access of objects including database tables that are perma-
nently stored in flash memory 102, and may maintain cached
copies in DRAM in compute nodes 114.

Compute nodes 114 are compute nodes, such as node 100
shown in FIG. 6, with processors, DRAM caches of objects,
and interconnect. These compute nodes may be constructed
from commodity parts, such as commodity processors, inter-
connect switches and controllers, and DRAM memory mod-
ules.

Sharing data fabric services 116 allow application pro-
grams 122 and DBMS database program 119 to control poli-
cies and attributes of objects by executing routines and
launching threads of sharing data fabric 112 that are executed



US 9,047,351 B2

7

on compute nodes 114. The exact location of objects and
database records within flash memory 102 is transparent to
application programs 122 and DBMS database program 119
since sharing data fabric 112 copies objects from flash
memory 102 to DRAM caches in compute nodes 114 and may
obtain a copy from any location in flash memory 102 that has
avalid copy of the object. Objects such as database tables may
be replicated to make back-up copies in flash memory 102.

Sharing data fabric 112 performs consistency and coher-
ency operations such as flushing modified objects ina DRAM
cache to copy back and update the permanent object in flash
memory 102. Sharing data fabric 112 may also migrate flash
objects to new flash pages for wear-leveling or other pur-
poses, and update version logs and transaction logs.

Interconnect 110 includes the PCle switches in each of
compute nodes 114, and the high-speed interconnect between
nodes, such as Ethernet or InfiniBand links. Sharing data
fabric 112 sends objects and coherency commands across
interconnect 110 or directly within the compute node, such as
directly to flash management 108.

Flash management 108 is activated to migrate flash blocks
for wear-leveling and replication. Wear-leveling schemes
assign flash blocks for writing in a rotating, least-written, or
other fashion to even out usage of flash blocks and prevent
early wear-out and failure. Write buffers of flash blocks, logs,
and caches may be kept by flash management 108.

Flash interface 106 is an interface between flash manage-
ment 108 and hardware flash controllers 104, which control
low-level access of flash memory 102. While flash memory
102 may have separate modules on different nodes of com-
pute nodes 114, sharing data fabric 112 uses interconnect 110,
flash management 108, and flash interface 106 to transpar-
ently move objects to and from flash memory 102 on different
nodes. Flash memory 102 in aggregate appears to be a single,
unified flash memory that is transparently shared among
many instances of DBMS database program 119 running on
many compute nodes 114.

FIG. 8 is a diagram of services and interfaces to a shared
data fabric. DBMS database program 119 could communi-
cate directly with other database nodes using network inter-
face 120, but then the location of objects such as database
records in flash memory is not transparent to DBMS database
program 119. DBMS database program 119 would then need
detailed location information on database records. Send and
receive commands to network interface 120 may include
commands 128 such as get, put, lock, unlock, start, and abort,
which need detailed information on the object’s location,
such as a file handle or address Detailed information may
include context, thread, container ID, object ID. Location
information may be calculated by using a combination of the
container ID and the object ID. DBMS database program 119
would have to be re-written to provide this detailed location
information, which is undesirable.

Instead, standard, substantially unmodified DBMS data-
base program 119 is used, but instead of using network inter-
face 120 directly, DBMS database program 119 accesses
sharing data fabric 112 using API’s 116. API’s 116 include
SDF_GET, SDF_PUT, SDF_LLOCK, and other SDF-specific
versions of start, abort, commit, savepoint, create, delete,
open, and close commands. For example, lock and unlock
commands lock and unlock an object using a lock table in
sharing data fabric 112 to prevent another user from accessing
that object while locked. A node map in sharing data fabric
112 maps objects to address locations in flash memory, allow-
ing sharing data fabric 112 to read and write objects in flash
memory through flash management 108 and flash interface
106.
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Objects that reside in flash memory on a first node may be
accessed over sharing data fabric 112 by sending and receiv-
ing messages, and sending object data from a second node
over network interface 120. These messages may include
commands 128 such as get, put, lock, unlock, start, and abort.
These commands 128 are executed by SDF 112 using detailed
information on the object’s location, such as a file handle or
address, that are obtained from a node map, a sharing direc-
tory, or a cache map in sharing data fabric 112. Commands
128 and messages are received by a sharing data fabric 112 on
the first node, which may access its flash memory to obtain
the object. On a read access, sharing data fabric 112 on the
first node can then send the object data back through network
interface 120 to the second node’s sharing data fabric 112.

FIG. 9 shows permanent objects in flash memory being
copied to DRAM caches on multiple nodes. Objects may be
database records being accessed by a user query. Data fabric
switch 40 connects to NIC 36 on three compute nodes. Each
node has two NICs 36 to allow for a higher interconnect
bandwidth and for redundancy. Each of nodes 50, 52, 54 has
a processor 18, flash memory 24, and an object cache in
DRAM 22. An Ethernet or other switch (not shown) may also
be used, or may be included in data fabric switch 40.

In response to a user database query, a thread executing on
processor 18 on node 52 requests access to object 46, which
is present in flash memory 24 on node 52. The SDF on node
52 reads object 46 from flash memory 24 and copies the
object into its object cache in DRAM 22 as object copy 46'.
The DBMS program running on node 52 can then read object
copy 46' from its DRAM 22. In this example transfer over
data fabric switch 40 was not needed.

In a second example, a thread executing on processor 18 on
node 50 requests access to object 47, which is not present in
flash memory 24 on node 50, nor in DRAM 22 on node 50.
The SDF on node 50 determines that node 54 is the home
node for object 47. Node 50 may perform a lookup in a
directory to locate the object’s home node. The directory may
have several parts or levels and may reside partially on local
node 50 and partially on other nodes.

An SDF thread on node 50 sends a message to the home
node, node 54, requesting a copy of object 47. In response,
another SDF thread on home node 54 reads object 47 from
flash memory 24 and sends object 47 over data fabric switch
40 to local node 50. The SDF thread on local node 50 copies
the object data into its object cache in DRAM 22 as object
copy 47'. The DBMS program running on local node 50 can
then read object copy 47' from its object cache in DRAM 22.

Object 47 may have already been copied into DRAM 22 on
node 54 as object copy 47". Rather than read object 47 from
flash memory 24, when object copy 47" is present, object
copy 47" may be read from DRAM 22 and then sent over data
fabric switch 40 to node 50 to load object copy 47' into
DRAM 22 on node 50.

FIG. 10 shows components of a DBMS in more detail that
access a database stored in a distributed shared global flash
memory. DBMS program 200 is executing on a local compute
node that has database records cached in local DRAM as
cached objects in local buffer cache 23. There may be mul-
tiple executing instances of DBMS program 200 running on
different compute nodes, each with its own local cache buffer.

DBMS program 200 has two primary software compo-
nents that cooperate with each other. Query process 260
receives requests from users that contain a database query.
Storage management 270 performs access of database
records that are cached in local buffer cache 23. Storage
management 270 includes table reader 276 that reads records
from portions of a database table cached in local buffer cache
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23, table writer 277 that writes or modifies portions of a
database table cached in local buffer cache 23, and log writer
278 that logs modifications of records cached in local buffer
cache 23. While query process 260 performs query logical
operations, query process 260 does not access database
records, but instead calls storage management 270 to read or
write a record. Separating query and access functions an
improve software reliability.

SDF 20 is called by storage management 270 when a
requested database record is not cached in local buffer cache
23, or during flushes when modified records are copied back
to the more persistent storage in flash memory. SDF 20 per-
forms the multi-node operations needed to access data at one
ofnodes 242, 244 and copy that data into local buffer cache 23
or update that data in flash memory at the node.

The database record may be stored in flash memory at any
of'nodes 242, 244. Each node 242, 244 has local map 262 that
locates the requested data item stored in flash memory at that
node. The requested data may be a database record stored in
database tables 264, or a database index in database indices
266. Other data stored at a node may include log files 272 or
checkpoints 274 that are useful for error recovery.

An example of a Database Management System (DBMS)
is a system of one or more software programs, which are
written to enable the storage and management of user infor-
mation in a highly structured and well-defined way. The
DBMS enables certain storage properties such as Atomicity,
Consistency, Isolation, and Durability, the so-called ACID
properties.

Information may be stored as data records organized in
n-tuples (also termed simply tuples) of closely related infor-
mation called rows. A field of a row stores one of the records.
Collections of rows are called tables. One or more of a par-
ticular field within a table is called a column. A collection of
related tables is called a database, and the structure of the
related tables is called a schema. Data records may also be
referred to as data attributes or data items or objects.

A relational database is a database where information is
stored, accessed, and indexed according to specified values of
the respective fields, known as a relation. The specified values
include specified functions of values, such as ranges of val-
ues.

For example, a query is constructed for a relational data-
base which is intended to retrieve only those tuples from the
relational database that have a first item record conforming to
a first specification in the query AND a second data item
conforming to a second specification in the query, where the
logical operator AND is also part of the query. Continuing the
example, all of the field specifications and the logical operator
AND comprise an entity called a relational query specifica-
tion. In general, a relation refers to the relationship of data
items or attributes within a table, or even to the table itself.

The DBMS may be transactional, allowing user operations
to be performed as transactions that have well-defined prop-
erties. The properties may include an isolation property that
ensures that multiple concurrent and distinct transactions
operating on the database do not interfere with each other. The
transactions each perceive the state of the system as if each of
the multiple transactions is the sole transaction executing in
the database management system.

Another transaction property is atomicity, meaning that the
transaction can be aborted prior to committing any changes to
the database management system. The result of aborting the
transaction is no change to any record in the database.

The durability property indicates that once a transaction is
committed to permanent storage, any database record
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changes due to the transaction remain stable even if the sys-
tem restarts or a power failure or other kind of defined failure
occurs.

These properties of transactions may be ensured for a data-
base by a log file in log files 272. A log file is a data structure
in which the database management system maintains a
sequential record of all data modifications. A log file is used,
for example, to record committed transactions and to record
abort operations on uncommitted transactions.

When there are multiple users, there may be multiple local
buffer caches 23 on multiple nodes. There may be several
instances of query process 260 operating on one compute
node, using a shared local buffer cache 23, for processing
queries by different users.

All local buffer caches 23 and the permanent storage in
flash memory of nodes 242, 244 must be kept logically con-
sistent with one another. Periodic checkpoints to flush modi-
fied contents of the buffer cache to the permanent storage as
checkpoints 274 may be used as one way of maintaining
consistency.

FIG. 11 is a flowchart of the SDF processing a database
record miss in the local buffer cache. SDF 20 (FIG. 10) is
called by storage management 270 when a database record or
other data item is not present in local buffer cache 23, step
202. Storage management 270 in the executing instance of
DBMS program 200 uses a SDF_GET function in the SDF
API to activate a SDF thread that executes on the local com-
pute node’s processor, step 204.

The SDF optionally performs a global data lock operation,
step 206, in order to ensure that there is a single modifiable
copy of the particular data item. The SDF_GET operation
may retrieve a modified copy of the particular data item from
flash memory or from a local buffer cache on another one of
the nodes. A data versioning operation may also be performed
to identify the mostrecent version of the data item, and to save
a copy of the most recent version, in case subsequent modi-
fications to the data item need to be rolled back, or un-done.
Lock and version operations may not need to be performed in
some instances, such as database reads, but may be needed for
transactions, such as when writing to database records.

The SDF reads the requested data item from the node, such
as from flash memory at a home node for a database record, or
from a local buffer cache of a sharing node that has earlier
cached the database record, step 208. The requested data item
is then loaded into local buffer cache 23 by the SDF, step 210.
The SDF may also return a pointer to the data in the local
buffer cache so that DBMS program 200 has the pointer.

A cache pin operation may be performed by the SDF, step
212. A cache pin operation ensures that the particular data
item remains (is pinned) in the local buffer cache. This guards
against another request from this or another thread causing
replacement of the data item in cache.

SDF returns a success code to the calling program, such as
storage management 270 in DBMS program 200, step 214.
Storage management 270 may then access the data item, step
216. Writes to the data item may be allowed.

After DBMS program 200 has finished accessing the data
item, step 216, DBMS program 200 calls the SDF to unlock
the data item, step 218, if that data item was previously locked
in step 206. When the data item was pinned by a cache pin
operation in step 212, then DBMS program 200 calls the SDF
to perform a cache unpin operation, step 219.

When the data item was written in step 216, the DBMS
program optionally calls the SDF to flush the modified data
item back to the flash memory at its home node, step 224. The
SDF then stores the modified data item at its home node, step
226. Various logs may need to be written by the DBMS
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program or by the SDF to ensure that this write back is
durable. The DBMS program optionally calls the SDF to
perform a SYNC operation, step 220, so that the modified
data item is made visible to other nodes, step 228. The SDF_
SYNC operation makes the results of selected previous
operations including the modified data item visible to other
instances of DBMS program 200' that are executing on the
local node or on other compute node in the system. A global
cache directory at the home node may be updated to make the
modified data item visible to other nodes.

Other database operations, such as row insertions, row
deletions, and index updates, are performed in a similar man-
ner using the SDF API.

FIGS. 12A-D show several alternate interfaces to the SDF.
In FIG. 12A, SDF 20 has an API that uses multi-processing
interfaces such as SDF synchronization operations in place of
synchronization primitives typically provided by a multi-
processing system. The SDF API has software libraries with
interfaces that are compatible with existing multi-processing
interfaces, such as Symmetric-Multi-Processing SMP inter-
faces. Since the SDF API has functions with interfaces match-
ing the SMP interface, programs written for the SMP inter-
faces require little or no modification to operate with SDF 20.
The SDF synchronization operations are enabled to operate
transparently across multiple nodes in a cluster. Data items
stored in flash memory 24 or in buffer caches 222 of nodes
242, 243, 244 can be accessed by DBMS program 200 using
these SMP-compatible interfaces that cause SDF 20 to copy
the data items into local buffer cache 23, and flush modified
data items back.

FIG. 12B shows a SDF interface that uses a file system
interface. DBMS program 200 uses data containers rather
than files or magnetic disk partitions. Database tables,
records, or other data items are stored in data containers 252,
253, 254 on nodes 242, 243, 244, but appear to be local to
DBMS program 200. DBMS program 200 is written to
advantageously use functions of SDF 20 that mimic
file-system functions for magnetic disk partitions, such as a
Iseek( ) function.

DBMS program 200 accesses data items stores in data
containers 252, 253, 254 using SDF 20’s API, which is com-
patible with existing DBMS access methods using file sys-
tems and/or device partitions. Durability and consistency of
data stored in data containers may be automatically and trans-
parently maintained by SDF 20.

FIG. 12C shows a SDF interface using SDF MUTEX
operations. Software compatibility libraries 248 that DBMS
program 200 is written for include a symmetric multi-pro-
cessing (SMP) mutual-exclusion (MUTEX) operation. When
DBMS program 200 calls the SMP MUTEX operation in
compatibility libraries 248, a SDF_MUTEX operation is
called in its place. The SDF_MUTEX operation has the same
list of parameters and variables in its interface, and thus is
transparent to DBMS program 200.

SDF 20 allows direct substitution of data fabric primitives
such as SDF_MUTEX for similar primitives such as SMP_
MUTEX provided by platforms supporting a single address
space. For example, SDF 20 provides a test-and-set operation
which is used to create a MUTEX operation that is a direct
replacement for an SMP-based MUTEX operation.

Programs written for the SMP interfaces require little or no
modification to operate with SDF 20. The MUTEX synchro-
nization operations are the enabled to operate transparently
across multiple nodes in a cluster.

FIG. 12D shows a SDF interface using a container of
synchronization primitives. DBMS program 200 is written to
use synchronization primitives such as test-and-set, and com-
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pare-and-swap, which consist of multiple operations per-
formed atomically on one or more program variables. These
variables are enabled to be shared among multiple instances
of DBMS program 200 by placing them into primitive opera-
tion container 240, which is shared among the multiple
instances. SDF 20 allows DBMS program 200' (not shown)
executing on other nodes to access primitive operation con-
tainer 240.

Special synchronization operations such as test-and-set,
and compare-and-swap, are implemented efficiently within
SDF 20 and provided to DBMS program 200 through the SDF
API, which has special compatible functions for these opera-
tions.

Since the SDF API has functions with interfaces matching
the interface of these primitive operations, programs written
for the primitive-operation interfaces require little or no
modification to operate with SDF 20. The existing calls to the
synchronization operations are redirected to use objects in the
new synchronization container. The SDF synchronization
operations may be enabled to operate transparently across
multiple nodes in a cluster.

FIG. 13 shows a put record operation that puts a record in
the log file for error recovery. SDF 20 may support distributed
log file operations through log file containers. A log file
container may use a special node address space for perform-
ing functions of a distributed log file. A log file container may
maintain certain attributes important to log files, such as
n-way replication. The log file container may allow multiple
instances of DBMS program 200, 200" to commit database
updates in a global order.

For example, a DBMS storage manager instance inserts a
record into log file container 250. In response to a request
from a transaction executing in any DBMS program instance,
the DBMS storage manager instance performs a data fabric
PUT RECORD operation to add a log record to log file
container 250. The SDF performs the operation, updating the
contents of log file container 250 and updating internal point-
ers. This operation may be done atomically by the SDF and be
recoverable by the SDF when failures occur in the hardware
or software.

The SDF may perform replication operations to replicate
the updated record, and wait for the log record to be perma-
nently stored before returning a success code to the DBMS
storage manager instance. Each PUT RECORD operation
may be associated with a Logical Sequence Number (LSN)
from LLSN generator 246. DBMS program 200, 200' is able to
subsequently use the LSN to retrieve the respective log record
should a database recovery or rollback operation be neces-
sary. Various techniques for logging and recovery may use the
log file container 250.

FIG. 14 shows an action node requesting a database object
from a home node that fetches a modified object on a sharing
node using transaction tables and an object directory. A node
may operate as one or more of a home node, an action node,
or a sharing node for any particular object. Objects include
database records or other data items associated with a data-
base.

Home node 52 is the permanent location of object 46 in
flash memory 24. Action node 50 is executing an application
program that requests an object. Sharing node 54 has a copy
of the object in its object cache in DRAM 22.

A program executing on action node 50, such as executing
instances of DBMS program 200 (FIG. 10), requests access
of object 46. Object 46 is not yet present in DRAM 22 of
action node 50, so the SDF determines the object’s home
node, such as by hashing the object’s name or identifier or
looking up the object in a table.
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Transaction table 42 is stored in DRAM 22 of action node
50 and eventually contains information to identify home node
52. In response to a request from action node 50 to access
object 46, the SDF on home node 52 looks up the object in its
object directory 44. Object directory 44 indicates that
although object 46 is present in flash memory 24 of home
node 52, this object 46 is stale. A modified object 46' is
present in DRAM 22 of sharing node 54 in this example.

Since modified object 46' is more current than stale object
46 in flash memory 24, SDF on home node 52 sends a mes-
sage to SDF on sharing node 54. This message causes trans-
action table 42 on sharing node 54 to be checked to make sure
that modified object 46' is not locked for use by a program
executing on sharing node 54. If modified object 46' is locked,
action node 50 waits until the lock is released. Release of the
lock causes an update of transaction table 42 on sharing node
54.

When transaction table 42 indicates that modified object
46' is unlocked, SDF on sharing node 54 sends the object data
of modified object 46' over data fabric switch 40 to action
node 50. Object copy 46" is created in DRAM 22 on action
node 50. The requesting program on action node 50 can now
access object copy 46".

Other steps may be performed to update object directory 44
and stale object 46 in flash memory 24 on home node 52,
although this may be delayed to allow home node 50 to update
object copy 46" to reduce the number of writes and operations
to flash memory 24.

FIG. 15 is a snapshot state diagram of a compute node that
can act as an action, home, or sharing node for a distributed
database program. Node 100 is one of compute nodes 114 of
FIG. 7, with hardware such as detailed in FIG. 6.

Node 100 has threads running on processor 18, including
application thread 90 and/or SDF thread 92. Application
thread 90 can be an executing instance of DBMS program 200
on local node 100.

Messaging 94 allows SDF thread 92 to send and receive
messages from other nodes. Messaging 94 may use software
and hardware such as interconnect 110 of FIG. 7, NIC’s 36 of
FIGS. 6, 9, and other hardware such as switches.

Node 100 includes DRAM 22 and flash memory 24. The
DRAM state shown is a snapshot of the contents of DRAM 22
ata particular point in time, while the flash state is a snapshot
of'the contents of flash memory 24 at approximately that same
time.

Flash memory 24 at each node stores flash objects 80,
which may be grouped into containers. A flash object may be
uniquely addressable in the SDF using a container-identifi-
cation and an object identifier. Metadata 88 stored in flash
memory 24 may include container metadata and global meta-
data. Container metadata describes the attributes or properties
of'objects in a container (such as a number of replicas for the
container). Global metadata may include virtual-to-physical
node-identification mappings and/or hash functions. The
hash function is performed on the object’s name to generate
an identifier that can be used in further table lookups to locate
the object using a global map.

Object cache 84 in DRAM 22 stores copies of objects that
are also stored in flash memory 24 of the home node, which
may be node 100 or may be another node. DRAM objects 86
are objects that have node 100 as their home node, but the
object’s attributes specify that the object primarily resides in
DRAM 22 rather than in flash memory 24. For example,
frequently-accessed objects such as database indices 266 of
FIG. 10 may be selectively enabled to remain in DRAM 22
rather than the flash memory to improve look-up perfor-
mance.
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DRAM 22 also stores state information for particular
classes of nodes. Action node state 70 stores state information
for objects using node 100 as the action node, while home
node state 72 stores state information for objects using node
100 as their home node, such as DRAM objects 86 and flash
objects 80.

A home node is a well known, an authoritative source of the
object, which resides in DRAM, flash memory, or another
component in the storage sub-system. While an object may be
cached and/or replicated in DRAM and/or flash memory at
several nodes, only one of these nodes (at any one time) is
considered to be the home node for that object. An action
node stores a transient copy of an object. The action node
usually obtains a copy of the object from the home node.
Node 100 can operate as the home node for some objects, and
as the action node for other objects.

Transaction table 74 in action node state 70 stored in
DRAM 22 has entries to track transactions. Transaction table
74 keeps a list of all objects accessed (touched) during a
transaction, and may keep a copy of the object’s initial state
when the object is modified, or a pointer to a log of changes
from an initial state that is archived. The initial state pointed
to by transaction table 74 aids in object recovery if an abort
occurs. Transaction table 74 provides recoverability for
threads of applications and SDF services that execute on the
node’s processor. There may be links between tables, such as
links in entries in transaction table 74 to entries in transient
protocol state table 76.

A transaction is a series of operations. The transaction as a
whole succeeds as a unit or the transaction and all operations
in the transaction are aborted. This may also be referred to as
an atomic set of operations. In a transactional system that
maintains isolation among concurrent transactions, there are
no unexpected effects from an aborted transaction since either
all operations in the transaction are executed completely, or
any partially-executed operations of the transaction are
aborted without visible side effects. Transactions are
extremely useful for distributed database programs, since a
database record may be updated as a transaction, preventing a
partial update of that database record.

Transient protocol state table 76 in action node state 70
stored in DRAM 22 has entries to track outstanding requests.
The requesting thread, type of request, request status, and
order of requests from each thread are stored in this table,
which is shared by all threads at node 100.

Home node state 72 stores information for objects thathave
node 100 as their home node, and are thus stored (homed) in
DRAM 22 (as DRAM objects 86) or flash memory 24 (as
flash objects 80) of node 100. Home node state 72 in DRAM
22 stores a sharing list within global cache directory 78, and
flash object map 82. Global cache directory 78 stores the state
ot all objects that have node 100 as their home node and have
been cached in one or more nodes in the system. The state of
the object in global cache directory 78 is one of shared,
modified, invalid, and either locked or unlocked. An indica-
tion of whether the object is being accessed within a transac-
tion may also be stored in global cache directory 78. The
locations of cached copies at other nodes, and the state and
progress of any coherency operations for the objects are also
kept in global cache directory 78.

Flash object map 82 maintains a map between an object
identifier and its location in flash memory 24. Flash object
map 82 may store an address, a partial address, or an identi-
fication of the location of the object in flash memory 24. Flash
object map 82 maps at least a portion of a respective identifier
of'a particular one of the objects to a physical location in flash
memory 24. Flash object map 82 has entries for all flash
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objects 80 that belong to this home node, regardless of
whether that object is cached at any node. Flash object map 82
may be a homed object map that also has entries for all
DRAM objects 86 at this home node.

Database Transaction Flows Using SDF—FIGS. 16-19.

Snapshots of the states and movements of database objects
and SDF messages among two nodes in a multi-node shared
flash memory system are shown in the examples of FIGS.
16-19. Snapshot diagrams, similar to that of FIG. 15, are
shown for action node 50 and home node 52.

Extensions of these flows could involve sharing node 54
(FIG. 14) when sharing node 54 contains a modified copy of
the requested object. Then the requested object is sent from
sharing node 54 rather than from home node 52, since the
flash object at home node 52 is stale. Messages passed among
these nodes, including the database object being copied, are
shown by the arrows.

These examples are for operations that are part of transac-
tions. To provide ACID properties to executing instances of
DBMS program 200, 200, operations that access database
records are organized as transactions. Transactions allow the
operations of a transaction to be committed together as an
atomic unit, preventing partial updates of database records
that can corrupt the database. Operations that are not part of
transactions could also be used for less important accesses,
such as status inquiries or database reads. When a requested
object is already present in object cache 84 of action node 50
(ahit), application thread 90 may simply read the object from
object cache 84.

FIG. 16 shows a get operation of a transaction that misses
in the object cache of the action node, and fetches a requested
object from flash memory of the home node. A miss occurs
when application thread 90 checks its local DRAM object
cache 84. The node that application thread 90 is running on is
referred to as action node 50 since actions are being per-
formed at this node. A request is sent from the action node to
the home node for the requested object. The location ofhome
node 52 is determined by action node 50, such as by hashing
the name of the object being requested and using the hash as
anaddress in lookup tables. The lookup tables may be a global
map from identifiers of the objects to home nodes of the
objects.

Application thread 90 uses the address or identifier for
home node 52 to send a message to home node 52. This
message requests the object from home node 52. At home
node 52, the message received from action node 50 activates
SDF thread 92, which looks up the object identifier in global
cache directory 78 at home node 52. In this example, no
copies of the object have been cached by any other nodes, so
a directory miss occurs.

SDF thread 92 running on home node 52 then looks up the
object identifier in flash object map 82 to find the address of
the object in flash memory 24 of home node 52. Flash
memory 24 is read to copy flash object 80 stored in the flash
memory of home node 52. A copy of flash object 80 is sent
from SDF thread 92 at home node 52 to application thread 90
at action node 50 via an interconnect between home node 52
and action node 50. Application thread 90 (or a SDF miss-
handling thread such as SDF thread 92 on action node 50
invoked by application thread 90) then loads the copy of the
object into object cache 84 at action node 50.

Transaction table 74 is updated to include an entry for the
copy of the object that was just loaded into object cache 84.
This entry identifies the current transaction that requested the
object. At the start of a new transaction, application thread 90
can create a new entry in transaction table 74, and this entry is
updated with a list of objects touched by the transaction as the
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transaction is processed, or with pointers to sub-entries for
each object in that transaction. Application thread 90 can
resume processing the transaction and read the object copy in
its object cache 84.

FIG. 17 shows a commit transaction operation. Once all of
the operations in a transaction have been started and are
nearing completion, the transaction ends using a commit
transaction operation as shown in FIG. 17. The commit trans-
action operation ensures that all operations of that transaction
have been successtully completed before any modified
objects such as updated database records are committed to
persistent memory. Thus the transaction is committed as a
whole, all-or-nothing. All objects modified by the transaction
are updated, or none are updated.

When application thread 90 reaches a commit transaction
operation, application thread 90 reads transient protocol state
table 76. Transient protocol state table 76 contains a list of all
outstanding requests for all prior threads at action node 50,
the status of all requests, and the order of requests for each
thread. Application thread 90 waits until completion of all
outstanding requests for the current transaction for applica-
tion thread 90. If there are any dependencies among threads,
application thread 90 must wait for completion of dependent
requests at other threads, according to any ordering rules.

Once all dependent outstanding requests have completed,
as indicated by transient protocol state table 76, application
thread 90 reads the transaction’s entry in transaction table 74.
A list of all objects touched by that transaction is read from
transaction table 74. Objects that were only read do not need
to be copied back to the home node, but modified (dirty)
objects do need to be copied back.

Each of the modified objects for this transaction are sent
back to their respective home nodes, or flushed. A flush opera-
tion causes a cached object to be sent to home node 52 in order
to synchronize the most up-to-date state of the object with the
source. A flush to the object source in flash-memory provides
persistence and a level of durability to the object state.

A flush may not require that flash memory is immediately
written with the modified object. Instead, the modified object
may be stored in DRAM or a write buffer on home node 52
when the flush is completed. Later, home node 52 may per-
form the actual writing of the modified object to flash
memory.

A two-phase commit may be used to avoid contentions
with other nodes that may also be accessing one of these
objects at about the same time. Action node 50 may in a first
phase indicate a desire to write a modified object back to the
home node, and receive a timestamp, and then in a second
phase actually write the modified object if there are no objec-
tions from other nodes. If another node objects, such as by
also indicating a desire to access the same object, the times-
tamps can be compared, and the node with the earlier times-
tamp wins.

After the two-phase commit process has succeeded, SDF
thread 92 on home node 52 locates the homed object inside
flash memory using flash object map 82, and the modified
object from action node 50 is written into flash memory as one
of flash objects 80. Global cache directory 78 may first be
consulted to verify that no other nodes have this object, and
invalidations may be sent to any sharing nodes.

Global cache directory 78 is updated to indicate that action
node 50 no longer has this object locked. SDF thread 92 on
home node 52 sends a message to action node 50 to unlock the
modified object that was just updated at home node 52, and
application thread 90 on action node 50 unlocks the object in
object cache 84. The object could be deleted from object
cache 84, or changed from modified to shared, and changed to
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the unlocked state to indicate that this object cannot be written
until a new lock is obtained form home node 52.

The transaction’s entry in transaction table 74 is deleted
once all modified objects have been successfully flushed to
their home nodes, and unlocked in object cache 84. The
transaction in finished and has been committed.

If any modified object cannot be written back to its home
node, such as if the home node crashed, then the transaction
being committed must be aborted. Any modified objects that
have already been written back to their home nodes must be
restored to their initial conditions. Log files may be used to
recover from this rare situation.

FIG. 18 shows an abort transaction operation. Sometimes,
one of the operations inside a transaction cannot be com-
pleted, or has an unsuccessful return code, perhaps after sev-
eral retries. A requested object may be locked by another node
and unavailable, and that other node may have crashed or
locked up, preventing release of the requested object. An
abort transaction operation may then be performed.

Application thread 90 reads transient protocol state table
76 and waits for all outstanding dependent requests that are
ordered before this transaction to complete. Then transaction
table 74 is read to obtain a list of all objects touched by the
transaction being aborted. Transaction table 74 contains the
initial states of all objects in the transaction, or pointers to
these states, or other information that allows the initial states
to be obtained or generated. For example, the initial state of an
object may be stored on the home node of that object.

All touched objects in this transaction are restored to their
initial state at the beginning of this transaction, such as by
restoring objects in object cache 84 using the initial states
from transaction table 74. Alternately, each of the touched
objects may simply be invalidated in object cache 84.

Restored objects in object cache 84 that were locked by the
aborting transaction are unlocked, with an unlock message
being sent to the home node for each object being unlocked.
Home node 52 updates global cache directory 78 to indicate
that the object is unlocked. Other nodes may now access the
object. Once all restored objects have been successfully
unlocked, the entry for the aborting transaction can be
removed from transaction table 74.

FIG. 19 shows sync, transaction start, and lock operations.
A transaction start operation creates a new entry in transac-
tion table 74 at action node 50. A copy of all objects that will
be touched by the new transaction are stored in transaction
table 74 or otherwise archived to allow rollback to this initial
state should the new transaction later be aborted.

A sync operation, such as an SDF_SYNC, is performed to
synchronize application thread 90 with other threads on
action node 50 or on other nodes. Application thread 90 (or
SDF thread 92 if called by application thread 90 to perform
the sync) reads transient protocol state table 76, which has an
ordered list of all outstanding requests for all threads at action
node 50, and the status of those requests. Application thread
90 waits until all outstanding dependent requests have com-
pleted.

The sync operation uses a set of ordering rules to determine
which outstanding requests must be completed prior to the
sync operation completing. In some embodiments, each sync
operation is enabled to select the ordering rules it uses. In a
first example, a sync operation executed by an application
does not complete until all outstanding operations of the
application have completed. In a second example, a sync
operation does not complete until all outstanding write opera-
tions of a particular transaction have completed. In a third
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example, a sync operation does not complete until all out-
standing operations of the action node performing the sync
operation have completed.

Once all outstanding requests, as determined by the order-
ing rules in use, have completed, the sync operation is com-
pleted. Application thread 90 can resume having synched to
other threads.

A lock is requested before application thread 90 writes to
an object that has already been loaded into object cache 84 on
action node 50. Once locked, other nodes cannot write that
object.

Application thread 90 sends a lock request message to
home node 52. SDF thread 92 on home node 52 looks up the
object’s entry in global cache directory 78 and waits until the
object is available and not locked by any other thread on any
node. Once the object is free, SDF thread 92 on home node 52
returns the lock to action node 50.

An ordered queue may be used to process lock requests at
home node 52. In addition to basic mutex-like single state
locks, read-write, and upgrade locks, various complex sets of
locks may also be implemented (e.g. multi-granularity and
hierarchical locks).

Several other embodiments are contemplated by the inven-
tors. For example, while PCle switch 30 has been described,
other local buses could be used, and switch 30 could be a
HyperTransport switch rather than a PCle switch. Multi-
protocol switches or multiple switches or hubs could be used,
such as for supporting HyperTransport and PCle on the same
node. Data fabric switch 40, PCle switch 30, and interconnect
110 may have overlapping hardware or software and operate
to allow messages to pass for SDF.

Rather than using a local-bus switch, other network topog-
raphies could be used, including rings, chains, hubs, and
links. Although flash memory has been described, other solid-
state memories could be used for storing the objects at the
home node (homed objects), such as phase-change memory,
ferroelectric random-access memory (FRAM), Magnetore-
sistive RAM (MRAM), Memristor, Phase-Change Memory
(PCM), Silicon-Oxide-Nitride-Oxide-Silicon (SONOS)
memory, Resistive RAM (RRAM), Racetrack memory, nano
RAM (NRAM), and other non-mechanical non-volatile
memories. Flash memory uses electrically-erasable program-
mable read-only memory (EEPROM), although other tech-
nologies such as Phase-change-memory (PCM) may be sub-
stituted. NAND flash memory may be used to provide
advantages in performance, such as write bandwidth, com-
pared to other non-volatile, electronic memory types. Addi-
tional levels of storage hierarchy could be added, such as
hourly, daily, or weekly backups to disk, tape, or optical
media. There could be many flash modules or only one flash
module.

While the description herein may describe the global,
shared flash memory as being accessible in one global shared
address space, in other embodiments, the global, shared flash
memory is accessible in a plurality of global address spaces.
For example, in some embodiments, each container is acces-
sible by a respective address space.

The Sharing Data Fabric (SDF) is a unified user-space
mechanism to access and store data into hierarchical DRAM,
flash memory and the storage sub-system of a clustered or
distributed set of compute nodes. SDF uses user-defined
attributes to control access, consistency, duplication, and
durability of objects in storage. To each application executing
on any compute node, the distributed data and storage appears
to be logically one big device with integrated cache, memory
and storage.
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The layers of software and hardware in FIG. 5 may use
various combinations of hardware, firmware, middleware,
drivers, software, etc. and the layers may be modified in
various ways. The connections and interfaces between layers
and components may also vary from the simplified diagrams
of FIGS. 5, 6. Executing instances of DBMS program 200,
200" may operate on multiple nodes, with one instance per
node, or many instances per node. Several query processors
could share a common storage management 270, or each
query processor could have its own storage management 270.
Many other arrangements and partitionings of blocks are
possible. DBMS 200 may be substantially unmodified, yet be
relinked or use a different library, or may change some routine
names, and may changing how locking is done.

When transactions are not supported or used, transaction
table 74 and (optionally) transient protocol state table 76 may
be omitted. Other tables, lists, or data structures may be used
to track SDF operations at the action and home nodes. Tables
may contain entries in table format, or as linked lists, or in
other formats, and can be flat, hierarchal, multi-level, or in a
variety of other formats. Global cache directory 78 may con-
tain sharing lists with or without other information.

Transient protocol state table 76 in action node state 70
stored in DRAM 22 has entries to track outstanding requests.
Rather than storing information on threads, information on
contexts may be stored in state table 76. The requesting con-
text, type of request, request status, and order of requests from
each context are stored in this table, which is shared by all
contexts and their threads at node 100. An indirection of
“context” is used to link a sequence of activity of gets, puts,
etc. An application thread can use multiple contexts, or mul-
tiple threads can use one context. Application threads cannot
see any SDF related tables, only SDF protocol threads can. By
using contexts, monitoring of what application thread is call-
ing which SDF calls is not needed. This makes the API more
flexible.

For FIGS. 16-19, an asynchronous messaging model could
be enabled by activating a receiving SDF thread 92 at action
node 50 when a message returning an object copy is received
from home node 52. Then the return arrow would go to SDF
thread 92 rather than to application thread 90 at action node
50.

In this variation, receiving SDF thread 92 then loads the
object copy into object cache 84 of action node 50 and appli-
cation thread 90 can use the object copy. This handoff using
the receiving SDF thread isolates application thread 90 from
the details of MPI messaging and may improve robust multi-
threaded execution.

While a database program requesting an object has been
described, other kinds of programs such as networked ser-
vices, applets, proxies, clients, servers, etc. may request
objects and operate in a manner similar to that described for
application programs 122. Each node could run one applica-
tion program such as a server application, or multiple pro-
grams of the same or differing types. These programs may
themselves perform some caching of data. Some applications
ornetworked services may bypass SDF and reach the network
interface directly, or may do so for somekinds of accesses that
do not require SDF. Other kinds of API calls and network
procedures or calls may be used than those listed in FIG. 8,
and additional API functions may be added. Different kinds
of messaging between nodes may be employed other than
MPI or MPI-like messaging.

While computing nodes have been described as each hav-
ing a processor, DRAM cache, flash memory, and a NIC,
some nodes could be compute-only nodes without any flash
memory. Other nodes may be storage-only and have flash
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memory but do not execute application programs 122. Nodes
may have more than one processor, and may have additional
memories, such as a read-only memory for program code,
static random-access memory (SRAM), or other DRAM.
Several levels of processor cache may be present that may
keep even more transient copies of objects in DRAM 22. The
processor may include one or more processor chips, which
each may have one or more processor cores. For example, in
some embodiments the processor includes two, quad-core
AMD Opteron™ processor chips.

A computing node may have a processor that executes both
aweb server and a database server application, or a combined
application or applet. The compute node may be able to
execute several such applications simultaneously, or several
threads that can each handle one or more remote user
requests. Software may be partitioned or combined in many
different ways. In a first example, some or all of the SDF
APT’s are statically linked into an application program. In a
second example, some or all of the SDF API’s are in a library
that is dynamically linked into an application program. In a
third example, some or all of the SDF API’s are integrated
with an operating system. In a fourth example, a stub library
is used to replace at least some operating system calls (such as
for file operations) with calls to API’s in an SDF library.

The NIC may connect to an Ethernet, an InfiniBand, or
some other kind of network, or even multiple network types.
While two NIC’s 36 are shown per node in FIG. 14, one NIC
36 may be used per node, or more than two. Nodes may be
asymmetric and have different hardware rather than all be
identical. In FIGS. 16-17, the homed object may be stale, and
amore recent modified object from a third-party sharing node
may be fetched instead. An acknowledgement to home node
52 then may come from the sharing node rather than from
action node 50. Other flow modifications are possible.

In some systems, compute nodes may have multiple pro-
cessors that have separate DRAM caches but share flash
memory. Groups of logical compute nodes may use the same
physical hardware. One compute node could act as both
action node 50 and home node 52 for one object in some of
these variations. SDF could send messages between proces-
sors on the same compute node that are acting as action node
50 and home node 52. These intra-node messages may or may
not use NIC 36.

Direct-memory access (DMA) may be used to transfer
blocks of data, rather than using I/O or other instructions by
processor 18 (FIG. 6). The terms permanent and transient are
relative to each other rather than absolute. Transient objects in
DRAM caches may be flushed or copied back to flash peri-
odically, or after a period of no accesses. DRAM caches may
be organized per node, per application, per thread, per con-
tainer, and various other organizations. A permanent object in
flash may still be moved from one node to another, or from
one flash block location to another at the same node, such as
for wear-leveling, data migration, or de-fragmenting pur-
poses. Permanent is meant to imply durability, or retention of
data upon power loss, rather than an unlimited life-time ofthe
object.

A particular object may be replicated, so that several copies
of'the object are located in flash memory of several different
nodes. This replication improves reliability since the home
node can fail and one of the back-up replica copies may then
be used as the home object. At any given time, only one of the
replicas may be designated as the permanent object in flash,
while the others are kept as backups. The replica copies may
provide additional read-only access to the object.

The node chosen as the home node could change over time
to spread the wear of the replicas. Multiple replicas could be
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used as home objects, but for different groups of nodes, so that
each group of nodes has only one of the replicas as its home
for the object. In some embodiments, replicas provide read-
only access, and write access is performed at the home node.

While the permanent object has been described as residing
in flash memory of'the home node, and transient copies of the
object have been described as residing in DRAM cache on
any node, some classes of object may have varying properties.
For example, some objects may be stored primarily in DRAM
rather than in flash memory, such as DRAM objects 86 of
FIG. 15. Some objects may be DRAM-only objects that are
never stored in flash memory. Instead, the permanent object is
in DRAM at the home node. Alternately, some objects may
not be allowed to be present in DRAM caches, but only in
flash memory at the home node. These flash-only objects may
be copied to DRAM for a specified short period of time only.
Some objects may have time limits for residing in DRAM, or
may specify how often they must be copied back to flash
memory. The maximum number of shared copies allowed
may be specified as an attribute.

Objects are a type of element that can be stored in a con-
tainer. Elements can be fixed-sized or variable-sized. Vari-
able-sized elements may be termed objects. The description
above applies similarly to objects that are fixed-size elements,
with some differences such as an ability to access fixed-size
elements using, for example, a table look-up (based on an
address of the element) rather than a hash (based on a key of
the object’s name).

To aid consistent distribution and location of data through
the clustered or distributed flash-memory system, metadata
88 (FIG. 15) may include an indication of a hash function to
be performed on the object identifier to generate an identifier
of a unit of storage known as a shard, and an indication of a
hash function on the container name to generate a node name.
A shard-mapping table maps shard identifiers to nodes (for
example, via virtual node names), and another table may be
used to map virtual node names to physical node addresses to
provide a level of indirection in order to enable dynamic
configuration of the distributed flash-memory system. Flash
object map 82 may be a node map or alocal map. Metadata 88
may be stored in flash memory 24 or may be stored in another
memory such as a non-volatile write buffer or a battery-
backed memory.

In addition to the threading model described where each
request is handled by a thread, an event based model could
also be used where contexts (with state and progress indica-
tors) are maintained for each request utilizing a handful of
threads. Application thread 90 in FIG. 16 uses the address or
identifier for home node 52 to send a message to home node
52. Alternatively, at any time during processing of an outgo-
ing request, the application thread may hand off the request to
the SDF thread, which performs any of the determining or
messaging functions on behalf of the application thread.

The word “may” indicates optionally and/or selectively.
An object name may be an object identifier, and an identifier
can be a name, key or address. The term thread is sometimes
used generically to refer to a locus of execution, and may refer
to one or more threads, processes, programs, applications,
applets, objects, executing contexts, etc.

In addition to storing all tables in DRAM, tables could also
be stored in a DRAM and flash-memory based hierarchy.
Tables could be backed up to flash periodically. Backing up
tables to flash memory could be specific to a local node or
global. In addition to application thread 90 executing SDF
protocols on the action node, SDF may process the protocol
on a thread that may process more efficiently and act as a
proxy for application thread 90. Such a thread may reside in
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the application process or in an SDF daemon on the same
node. Various arrangements, partitionings, and levels of
threads, programs, routines, and applications are possible.

The techniques described herein are applicable to various
types of databases, such as row-oriented databases, column-
oriented databases, relational databases, transactional data-
bases, and databases with and/or without some and/or all of
the ACID properties. While specific examples of SDF com-
mands have been given, there are, of course, many possible
ways of arranging and/or constructing and/or providing one
or more data fabric commands and/or other ways of control-
ling and/or managing a data fabric to achieve similar effect.
Transactions may include lightweight transactions such as for
locks, and persistent transactions.

The specific API functions provided by the data fabric vary
according to different embodiments. Standard APIs used by
applications executing in a single address space are replaced
with data fabric APIs that transparently enable the application
to execute in a distributed fashion as shown in FIGS. 12A-D.

Flash interface 106 and flash management 108 (FIGS. 7-8)
may be software, firmware, hardware, or various combina-
tions. Hardware flash controllers 104 may include firmware.
Primitive operation container 240 (FIG. 12D) may also con-
tain log files, database indices, and database tables.

A global ordering of operations on the database may be
implemented with an ordering protocol. A protocol for coor-
dinating operations from multiple nodes to the same database
in order to provide a global ordering, is two-phase commit. In
two-phase commit, there are two communication phases
between a particular set of nodes for every database update,
the first phase to “prepare” the set of nodes and agree on the
update, the second phase to perform the update. A logged
2-phase commit process may be used to facilitate failure
recovery. Recoverable decision and update schemes for a
clustered or a distributed system such as 3-phase commit,
voting or consensus may be used in place of 2-phase commits.

Flash memory based log file containers are enabled to store
log records in non-volatile memory, such as battery-backed
DRAM, accessible via a flash memory controller, and return
the success code with DRAM latency vs. flash memory write
latency. For example, the latency to store a 256-byte record to
non-volatile DRAM memory is less than 10 microseconds.
By comparison, storing 256 bytes to some flash memory takes
at least 200 microseconds, and could take longer, if small
writes such as 256-byte writes are not directly supported by
the flash memory. Other kinds of files, records, or containers
could also be stored in a similar manner.

The SDF data fabric further enables efficient checkpoint
operations. One or more buffer caches, such as one buffer
cache per node, are managed by the data fabric for application
programs to use. As data items, such as attributes, database
records and rows, are modified, the data items are optionally
and/or selectively kept in one of the buffer caches rather than
being flushed back to permanent storage. The data fabric may
be enabled to provide a copy of a modified data item in the
buffer cache of one of the nodes to a program, such as a
DBMS storage manager instance executing on another of the
nodes and performing a data fabric access operation, such as
GET, in lieu of fetching a (stale) copy of the data item from
permanent storage.

Periodically, a DBMS program may flush some or all of its
modified items back to permanent storage, such as flash
memory, to keep the permanent storage contents relatively
current. The data fabric may be enabled to accelerate the
flushing by automatically copying all of the modified data
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items back to permanent storage. For example, the DBMS
software may use a data fabric GLOBAL FLLUSH command
to initiate this operation.

DBMS program 200, 200' are scalable, since additional
compute nodes may be added, each with a DBMS program
200, to improve the number of user queries that can be pro-
cessed simultaneously. All compute nodes are able to access
the same partitioned database that is stored persistently in
flash memory on the storage nodes. The SDF allows all com-
pute nodes to access the same database on the storage nodes
in a scalable fashion, since SDF caches portions of the data-
base being accessed in each compute node’s local buffer
cache. The performance and query throughput is a linear (or
nearly linear) function of system cost and/or size (number of
nodes). The system can be more cost effective and/or scale to
larger sizes than symmetric multiprocessor (SMP) systems. A
DBMS which has been written to execute in a single address
space can execute as DBMS program 200 on the scalable
hardware and software platform shown in FIGS. 5-8 with
minimal or no modifications of software of the DBMS. Cer-
tain centralized functions of a DBMS, such as the logging and
the checkpointing, are efficiently scalable (and thus efficient
for larger systems) without extensive modifications to the
DBMS software.

In an embodiment of the invention, a system comprises a
number of processing nodes, each node optionally having one
or the other or both of the ability to run application programs
and the ability to manage some amount of flash memory
and/or other type of high density, solid-state memory. These
various types of high density, solid-state memory are referred
to herein as flash memory without being interpreted as limit-
ing the scope or applicability of the techniques presented
herein.

Advantageously, embodiments of the invention provide for
asystem in which application processes are executable on any
processing node in a cluster, and the application processes are
further executable on more than one node, such as for load
balancing purposes. Embodiments of the invention further
provide for flash memory that is be globally accessible by an
application running on one or more nodes in the cluster.

Advantageously, embodiments of the invention also pro-
vide for flash memory that is accessible by applications with-
out the overhead of Input/Output subsystem operations, as is
the case typically with, for example, magnetic disk storage.
This overhead consumes time and CPU cycles and wastes
storage and interconnect bandwidth due to the large fixed-
block-sized operations. A lightweight access method is
desired to allow the performance potential of flash memory to
manifest in scalable cluster systems.

Embodiments of the invention also provide for mecha-
nisms for data access that are either synchronous (meaning
that the application program waits for completion), or asyn-
chronous (meaning that the application proceeds in parallel
with the operation being performed in the system, and deter-
mines at some later point if the operation has been performed,
waiting for its completion if desired).

Advantageously, embodiments of the invention also pro-
vide for underlying shared memory mechanisms, which
implement the lightweight access mechanism, and other sys-
tem tables and data structures that are robust in the presence
of failures, for example a power loss affecting one or more
nodes, or a software crash on one or more nodes. In certain
embodiments, when some nodes fail, other nodes continue to
use the remaining system resources. Methods for resource
partitioning and replication are enabled, by use of techniques
presented herein, to implement a high availability and/or fault
tolerant system.
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Advantageously, embodiments of the invention also pro-
vide the communication mechanisms which are configurable
such that one or more of nodes, flash memory, and application
processes can be added and/or removed from the system
without interrupting the operation of the nodes, flash
memory, or application processes already in the system.

In an embodiment, nodes intercommunicate over a data
fabric, such as the Schooner data fabric (SDF) or Sharing
Data Fabric (discussed above). A data fabric is a unified
user-space mechanism to access and store data into a hierar-
chical DRAM, flash memory, and storage sub-system of a
clustered or distributed set of computer systems, and having
user-defined attributes to control one or more of access, con-
sistency, duplication, and durability.

Applications on processing nodes are enabled to access
portions of the flash memory through node address spaces.
The node address spaces can be thought of as reference spaces
that application processes running (executing respective
application program code) on various nodes in the cluster are
enabled to use as a consistent way of referencing portions of
the global distributed flash memory.

Additionally, the processing nodes are enabled to cache
portions of the flash memory in other memory, such as
DRAM in the memory address space of one or more of the
application processes.

Application program code is enabled to access flash
memory by performing data movement operations, for
example SDP_GET and SDP_PUT. These operations in
effect transfer portions of contents between flash memory and
other memory, such as DRAM in the memory address space
of application processes. Additionally, there are control
operations which application programs use to determine
when previous data operations have been performed in the
system. SDP_SYNC is an example of such a control opera-
tion.

Techniques presented herein enable the implementation of
a general set of data access primitives such as SDP_GET and
SDP_PUT in a cluster of processing nodes and nodes con-
taining flash memory. One skilled in the art will recognize
that various other data access methods are also enabled by the
techniques presented herein.

Application programs use a data Application Program-
ming Interface (API) including, for example, SDP_GET and
SDP_PUT, and various other data controls which are suitably
enabled by techniques presented herein. One example
embodiment of a data API is in a client library, which consists
of'software code that application programs link into their own
code, and which includes application programming interface
functions such as SOP_GET and SOP_PUT. Other embodi-
ments are possible and do not limit the scope of the techniques
presented herein.

Each node in the cluster runs one or more system processes
that handle the processing of one or more of cross-node
requests, inter-node communication, inter-node cache con-
sistency, flash memory hardware access, flash memory wear
management, data replication, and other cluster services and/
or management functions. System processes optionally and/
or selectively run in user mode as do application processes,
and enable a logic layer, suitable to embody a high-level
abstraction of the data in flash memory. The logic layer is
usable by application programs. Techniques presented herein
enable various abstractions, particularly suited for certain
application programs, to be built in software on top of the
basic data and communication mechanisms of the cluster.
Other embodiments of system processes, such as co-location
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of system process code with the application code in a single
process model, are possible within the scope of the techniques
presented herein.

The client library code is invoked on data access operations
such as SOP_GET and SOP_PUT. The client library code is
run entirely in user mode without any context switches or
switches to kernel mode. In some usage scenarios, the API
library immediately returns the data, such as when there is
already a cached copy of the data at the processing node. If
communication with other nodes is required as part of pro-
cessing a data access operation, then a shared memory
SCOREBOARD mechanism is used to invoke a system pro-
cess. Various control and routing information is enabled to be
passed through the scoreboard from the application process to
the system process. Other embodiments of client library com-
munication with a scoreboard, such as UNIX domain sockets,
pipes, messages, or other well known mechanisms, may be
employed within the scope of the techniques presented
herein.

A system process is responsible for the cross-node process-
ing of SDP_GET and SDP_PUT, and communicates with an
invoking application process, or a software agent of the appli-
cation process, through a shared memory scoreboard. An
example processing flow for the SDP_GET operation is pre-
sented in FIG. 24, which is an illustration of a process flow of
a SDP_GET according to an embodiment of the invention.

As illustrated in FIG. 23, SDP_GET is invoked by the
application process (or a thread of the application process)
when referencing a particular data element stored in flash
memory. Thereafter, execution of SDP library code deter-
mines if the operation can be performed locally, for example
when a cache hit is detected (step 1). If cross-node commu-
nication is needed to perform the operation, for example
when a cache miss is detected, then the client library code
creates a scoreboard entry and invokes the SDP process,
which is an example of a system process.

As illustrated in FIG. 23, the system process examines the
scoreboard entry and creates a system message to be sentto a
system process on the node containing the flash memory or
other data resource (step 3). The cluster network controller
delivers the message to the node containing the data and a
system process is invoked on that node to process the message
(steps 5, 6). Next, the system process on the node containing
the data performs the requested data access operation (steps
8-10) (for example by reading flash for SDP_GET), creates a
response message containing the data and other control infor-
mation, and sends it back to the node running the application
process (step 11).

Again with reference to FIG. 23, the system process on the
node running the application process receives the response
message (step 12), deposits the data into a buffer in the appli-
cation process memory address space (step 13), updates the
scoreboard entry (step 14), and optionally signals the appli-
cation process (step 15).

As shown in FIG. 23, the application process at this time
considers the operation as having been performed and may
proceed (step 16) (if it was synchronously waiting), or alter-
natively may, at any subsequent time, issue a SYNC on the
particular operation which will succeed. The scoreboard
entry, no longer needed, is freed for future use by a subse-
quent data access operation.

The process flow illustrated in FIG. 23 illustrates a cache
miss. FIG. 22 is an illustration of a process flow for a cache hit
at the action node according to an embodiment of the inven-
tion. As shown in FIG. 22, a worker thread of the application
process at the action node initially consults the object cache.
Ifa cache hit is made, then the data stored in the cache may be
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obtained by the worker thread. Of course, if the desired data
is not present in the object cache, then the process flow of FIG.
23 may be used to enable the worker thread to retrieve the
desired data.

In the operation flow depicted in FIG. 23, the communica-
tion mechanism between application processes and the data
fabric processes must be efficient as possible. Embodiments
provide for a shared memory communication mechanism that
allows a very efficient implementation and yet provides many
additional features. Specifically, these features include meta-
data that tracks the progress of an operation as it is processed
by the data fabric, DRAM buffers for data read from flash or
written to flash, DRAM cache that is shared by one or more
client processes on the same node, cluster membership infor-
mation, mapping tables used to map logical object ID’s to
their physical location in terms of physical system, flash
device, and location with a flash device, and buffering and
metadata for the internode messaging system.

In an embodiment, the scoreboard may act as a communi-
cation mechanism. The communication mechanism of an
embodiment is implemented on top of file-based shared
memory that can be mapped in a process address space. The
backing file can be placed on traditional persistent media,
such as hard disks or flash memory, or may be on a RAM disk.
One approach for creating this form of shared memory is
using the “mmap” call available on most Unix operating
systems. This communication mechanism provides a collec-
tion of methods for creating, accessing and manipulating
shared memory by one or more application or system pro-
cesses. The communication mechanism of an embodiment
allows objects in a particular shared memory arena to be
accessed by multiple user and/or system processes. Also, the
communication mechanism of an embodiment provides for
allocation and deallocation of shared memory objects by
different processes and well as the dynamic addition/removal
of client/system processes that have access to the shared
memory. The communication mechanism of an embodiment
also provides features beyond those provided by standard
Unix shared memory facilities.

For example, the communication mechanism of an
embodiment provides for reference counts are maintained per
allocated object region so that multiple clients can reference
the same memory region, and that region will not be deallo-
cated until all clients have released it. As another example, the
communication mechanism of an embodiment provides for
specific regions of global shared memory to be marked as
read-only to prevent data corruption and facilitate the detec-
tion of errors. Also, the communication mechanism of an
embodiment provides a means of referencing an allocated
region of shared memory (object) that can be passed between
different user and system processes, and used as pointers
within data structures kept within shared memory.

For maximum performance, communication mechanisms
for an embodiment may allow shared memory regions to be
marked as non-pageable.

A communication mechanism of an embodiment is crash
tolerant, i.e., shared memory survives failures of client or
system processes. This feature may be achieved by recording,
for each allocated object, the identities of all processes that
are currently accessing the object. This metadata is kept in the
shared memory arenas, which survive process crashes. A
shared memory manager process runs in the background and
is responsible for handling process crashes. Advantageously,
failure of one client on a node does not perturb activities of
another client on the same node that doesn’t fail. Also, if a
system process crashes, then the process can be restarted and
the state of shared memory prior to the crash may be recov-
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ered. This state of shared memory prior to the crash may
provide information after the crash that can be used for
debugging purposes. In an embodiment, if a client process
crashes, then the shared memory manager updates all shared
memory structures that were referenced by the now defunct
client process.

The communication mechanism ofan embodiment option-
ally allows an allocated region of shared memory to be asyn-
chronously released by the shared memory manager, for
example, if there is no free memory available and the memory
manager needs memory for a high priority use, such as an
incoming messaging buffer. This is useful for implementing
and elastic object cache in which the amount of shared
memory used for the cache can grow or shrink dynamically,
based on how much memory is required for other SDF func-
tions.

The communication mechanism of an embodiment sup-
ports multi-versioning, in which concurrent write operations
may operate in parallel on distinct versions of the same
object, improving performance. This may be achieved by
providing an API (Application Programmer Interface) that
allows an application to create multiple version and designate
the current “permanent” version. Note that in this context the
“application” is the Schooner Data Fabric (SDF) application
library that implements the higher level get/set/etc. opera-
tions on top of this high function shared memory.

FIG. 20 is an illustration of a SDF Agent according to an
embodiment of the invention. As depicted in FIG. 20, the SDF
Agent on the action node is external to the application pro-
cess. The SDF agent on the action node uses a shared score-
board to communicate with a SDF process on the home node.
GET/PUT requests are handled by the SDF process on the
home node. SDF agent on the action node uses an interface to
the application process thread schedule to signal application
threads on sync completions.

FIG. 21 is an illustration of a process structure on the action
node and home node according to an embodiment. As illus-
trated in FIG. 21, at the action node, API calls invoke the SDF
library, which consults an object cache and post requests to
the SDF scoreboard. The SDF agent thread sends and receives
updates, updates the scoreboard, and activates worker threads
on request completion.

As illustrated in FIG. 21, at the home node, the SDF pro-
cesses use cooperative user level threads. These user level
threads service incoming requests and switch on flash and
third party cache requests. The scoreboard at the home node
stores the state of outstanding requests. Background threads
at the home node may perform performance related function-
ality, such as wear leveling.

FIG. 24 is an illustration of a scoreboard request block
format according to an embodiment of the invention. The
format depicted in FIG. 25 is merely illustrative of one
embodiment, and is not meant to depict all embodiments of
the invention.

FIGS. 25-31 illustrate an example of a scoreboard API and
scoreboard interaction according to one embodiment of the
invention. The scoreboard API and interaction illustrated in
FIGS. 25-31 describe an approach for the allocation and
tracking of shared memory that enables detection of and
recovery from shared memory system errors such as a crashed
application process that has outstanding buffers or scoreboard
entries. Shared memory is further enabled to be managed as a
system-wide resource that enables seamless system recon-
figuration, allowing non-stop system maintenance operations
and/or other advantages.

The communication mechanism of an embodiment pro-
vides synchronization and ordering constructs to facilitate
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orderly concurrent access from multiple user/system pro-
cesses. The state of the synchronization constructs is pre-
served in shared memory when a process crashes, so the
global memory manager can clean up the synchronization
state as needed (e.g., release locks that were held by a crashed
process). Examples of such synchronization and ordering
constructs are depicted in FIGS. 32-36 according to an
embodiment.

One skilled in the art will recognize that various other data
access primitives are also enabled by the techniques pre-
sented herein. Other data access primitives may include data
transactions, bulk copies, and index lookups, and various
other protocols.

Many embodiments are possible. Not all of these features
need to be present in all embodiments, and many variations
and sub-combinations of these features are contemplated by
the inventor. The invention could be implemented in hard-
ware, such as hardware logic gates, by a programmable pro-
cessor either using firmware, software, or other code, or vari-
ous combinations.

In some embodiments, the client library executes opera-
tions such as SDP_GET and SDP_PUT on behalf of an appli-
cation process completely through the scoreboard, including
operations that can be completed locally. This enables further
decoupling of the application process from the system pro-
cess.

In various embodiments, threads of the system process
may be run inside the application process. This enables
tighter coupling of the application process to the system pro-
cess.

Values can be inverted, offset, combined with other values,
and manipulated in many ways using known mathematical
properties. An inversion could be added to an XOR to gener-
ate an exclusive-NOR (XNOR), but this is simply a derivative
of'an XOR and within a family of XOR functions. Other logic
tricks and manipulations are contemplated and considered to
be within the scope of the invention.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. Thus, the sole and exclusive indicator of what is the
invention, and is intended by the applicants to be the inven-
tion, is the set of claims that issue from this application, in the
specific form in which such claims issue, including any sub-
sequent correction. Any definitions expressly set forth herein
for terms contained in such claims shall govern the meaning
of such terms as used in the claims. Hence, no limitation,
element, property, feature, advantage or attribute that is not
expressly recited in a claim should limit the scope of such
claim in any way. The specification and drawings are, accord-
ingly, to be regarded in an illustrative rather than a restrictive
sense.

What is claimed is:

1. A distributed storage system, comprising:

a plurality of nodes, wherein each node of the plurality of
nodes executes one or more application processes that
access persistent shared memory, wherein each of the
one or more application processes is maintained on a
respective node of the plurality of nodes;

the persistent shared memory, wherein the persistent
shared memory is implemented by solid state devices
maintained on the plurality of nodes;

a scoreboard implemented in the persistent shared
memory, the scoreboard storing one or more scoreboard
entries corresponding to a respective outstanding data
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access operation for accessing data stored in the persis-

tent shared memory, each of the one or more scoreboard

entries including:

data identifying a respective outstanding data access
operation;

a thread 1D identifying a thread, of the one or more
application processes, that initiated the respective
outstanding data access operation; and

a completion status associated with the respective out-
standing data access operation,

a shared data fabric to enable the one or more application
processes to access the persistent shared memory; and

a process in a first node of the plurality of nodes to update
a first scoreboard entry of the one or more scoreboard
entries, the first scoreboard entry corresponding to a first
data access operation performed by an application pro-
cess executed by the first node.

2. The distributed storage system of claim 1, wherein
regions of the persistent shared memory are allocated by one
process and deallocated by a different process.

3. The distributed storage system of claim 1, wherein ref-
erence counts are maintained for regions of the persistent
shared memory, and wherein only unreferenced regions of the
persistent shared memory may be deallocated.

4. The distributed storage system of claim 1, further com-
prising a communication mechanism to designate one or
more regions of the persistent shared memory as non-page-
able.

5. The distributed storage system of claim 1, including:

a process in the first node of the plurality of nodes to free
the first scoreboard entry for use by a subsequent data
access operation, wherein freeing the first scoreboard
entry is in accordance with completion of the first data
access operation.

6. A method for accessing data in a distributed storage

system, the method comprising:

at a first node in a distributed storage system comprising a
plurality of nodes, performing operations comprising:
executing one or more application processes that access

persistent shared memory, wherein:

executing the one or more application processes
includes performing a first data access operation,

the persistent shared memory is implemented by solid
state devices maintained on the plurality of nodes,
and

a shared data fabric enables the one or more applica-
tion processes to access the persistent shared
memory;
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determining whether a data object is in a memory of the
node;
in accordance with a determination that the data object is
not in the memory of the node:
creating a first scoreboard entry to be stored in a
scoreboard implemented in the persistent shared
memory, wherein the scoreboard stores one or
more scoreboard entries, including the first score-
board entry, corresponding to a respective out-
standing data access operation for accessing data
stored in the persistent shared memory, and
wherein the first scoreboard entry corresponds to
the first data access operation, each of the one or
more scoreboard entries including:
data identifying a respective outstanding data
access operation;
athread ID identifying a thread, of the one or more
application processes, that initiated the respec-
tive outstanding data access operation; and
a completion status associated with the respective
outstanding data access operation; and
updating the first scoreboard entry.

7. The method of claim 6, wherein regions of the persistent
shared memory are allocated by one process and deallocated
by a different process.

8. The method of claim 6, wherein reference counts are
maintained for regions of the persistent shared memory, and
wherein only unreferenced regions of the persistent shared
memory may be deallocated.

9. The method of claim 6, wherein one or more regions of
the persistent shared memory is designated as non-pageable.

10. The method of claim 6, further comprising:

creating a system message based on the first scoreboard

entry;

sending, to a second node of the plurality of nodes, the

system message; and

receiving, from the second node of the plurality of nodes, a

response message containing the data object,

wherein updating the first scoreboard entry includes updat-

ing the respective completion status associated with the
first data access operation.

11. The method of claim 6, further comprising:

in accordance with completion of the first data access

operation, freeing the first scoreboard entry for use by a
subsequent data access operation.
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